Loren Data's SAM Daily™

fbodaily.com
Home Today's SAM Search Archives Numbered Notes CBD Archives Subscribe
FBO DAILY - FEDBIZOPPS ISSUE OF AUGUST 17, 2016 FBO #5381
SPECIAL NOTICE

99 -- TECHNOLOGY TRANSFER OPPORTUNITY –-X-Ray Diffraction Method to Detect Defects in Cubic Semiconductor (100) Wafers: LAR-18306-1

Notice Date
8/15/2016
 
Notice Type
Special Notice
 
NAICS
927110 — Space Research and Technology
 
Contracting Office
NASA/Langley Research Center, Mail Stop 144, Industry Assistance Office, Hampton, Virginia, 23681-0001
 
ZIP Code
23681-0001
 
Solicitation Number
TT01193
 
Archive Date
8/30/2017
 
Point of Contact
Jesse C Midgett, Phone: 7578643936
 
E-Mail Address
j.midgett@nasa.gov
(j.midgett@nasa.gov)
 
Small Business Set-Aside
N/A
 
Description
NASA Langley Research Center in Hampton, VA solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use. NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: Scientists at NASA Langley Research Center have developed a method of using x-ray diffraction (XRD) to detect defects in cubic semiconductor (100) wafers. The technology allows non-destructive evaluation of wafer quality in a simple, fast, inexpensive process that can be easily incorporated into an existing fab line. The invention adds value throughout the semiconductor industry but is especially relevant in high end, high speed electronics where wafer quality has a more significant effect on yields. This technology can evaluate the concentration of crystal structure defects, and thus the quality, of cubic (100)-oriented semiconductor wafers. Developed to enhance NASA's capabilities in fabricating chips for aeronautics applications, the method supplants existing methods that not only destroy the wafer in question, but can take as long as a day to determine the quality of a single wafer. The approach can be used with any commonly used semiconductor, including silicon, SiGe, GaAs and others, in a cubic (100) orientation, which covers at least 90% of commercial wafers. It can also be used to evaluate the quality of epilayers deposited on wafer substrates and of ingots before they are sliced into wafers. NASA is seeking to license this technology commercially. US Patent pending. To express interest in this opportunity, please respond to LaRC-PatentLicensing@mail.nasa.gov with the title of this Technology Transfer Opportunity as listed in this FBO notice and your preferred contact information. Please also provide the nature of your interest in the technology along with a brief background of your company. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at http://technology.nasa.gov/. These responses are provided to members of NASA Langley’s Office of Strategic Analysis and Business Development “OSACB” for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities. If direct licensing interest results from this posting, OSACB will follow the required formal licensing process of posting in the Federal Register. No follow-on procurement is expected to result from responses to this Notice.
 
Web Link
FBO.gov Permalink
(https://www.fbo.gov/spg/NASA/LaRC/OPDC20220/TT01193/listing.html)
 
Record
SN04223540-W 20160817/160815234753-0e14544ec09cc13e0ab37969d8df2a81 (fbodaily.com)
 
Source
FedBizOpps Link to This Notice
(may not be valid after Archive Date)

FSG Index  |  This Issue's Index  |  Today's FBO Daily Index Page |
ECGrid: EDI VAN Interconnect ECGridOS: EDI Web Services Interconnect API Government Data Publications CBDDisk Subscribers
 Privacy Policy  Jenny in Wanderland!  © 1994-2024, Loren Data Corp.