SPECIAL NOTICE
99 -- TECHNOLOGY TRANSFER OPPORTUNITY –- Thermally Stable Nanocomposites with Aligned Carbon Nanotubes: LAR-17149-2
- Notice Date
- 11/28/2016
- Notice Type
- Special Notice
- NAICS
- 927110
— Space Research and Technology
- Contracting Office
- NASA/Langley Research Center, Mail Stop 144, Industry Assistance Office, Hampton, Virginia, 23681-0001
- ZIP Code
- 23681-0001
- Solicitation Number
- TT01209
- Archive Date
- 12/13/2017
- Point of Contact
- Jesse C Midgett, Phone: 7578643936
- E-Mail Address
-
j.midgett@nasa.gov
(j.midgett@nasa.gov)
- Small Business Set-Aside
- N/A
- Description
- NASA Langley Research Center in Hampton, VA solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use. NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: Scientists at NASA Langley Research Center have developed a method for producing multifunctional, structural, thermally stable nanocomposites with aligned carbon nanotubes. The invention improves upon current state-of-the-art graphite fiber composites by providing the same lightweight and mechanically strong characteristics, but also adds thermal stability and electrical conductivity. Thus, the invention can be used to provide a new class of mechanically strong, thermally stable and electrically conductive nanocomposites. Current state-of-the-art for lightweight and mechanically strong composites are graphite fiber composites. While graphite fibers have excellent mechanical properties, they do not have the desired thermal or electrical conductivities. Accordingly, when graphite fiber composites are to be used in high temperature environments, specialized high temperature or thermally conductive coatings are applied to the structure. These extra coatings add weight and cost to the ultimate structure. This invention, by way of nanocomposites with carbon nanotubes (CNTs), provides the lightweight mechanical strength of graphite fiber composites, but is also thermally stable and electrically conductive. The nanocomposite structure is a polymer in an extruded shape with carbon nanotubes (CNTs) longitudinally aligned and dispersed in the extruded shape along a dimension. The polymer is characteristically defined as having a viscosity of at least 100,000 poise at a temperature of 200 C. NASA is seeking to license this technology commercially. US Patent 8,608,993. To express interest in this opportunity, please respond to LaRC-PatentLicensing@mail.nasa.gov with the title of this Technology Transfer Opportunity as listed in this FBO notice and your preferred contact information. Please also provide the nature of your interest in the technology along with a brief background of your company. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at http://technology.nasa.gov/. These responses are provided to members of NASA Langley’s Office of Strategic Analysis and Business Development “OSACB” for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities. If direct licensing interest results from this posting, OSACB will follow the required formal licensing process of posting in the Federal Register. No follow-on procurement is expected to result from responses to this Notice.
- Web Link
-
FBO.gov Permalink
(https://www.fbo.gov/spg/NASA/LaRC/OPDC20220/TT01209/listing.html)
- Record
- SN04336650-W 20161130/161128233805-7b8c89a72bd429526a83a6ad716a1b1f (fbodaily.com)
- Source
-
FedBizOpps Link to This Notice
(may not be valid after Archive Date)
| FSG Index | This Issue's Index | Today's FBO Daily Index Page |