SPECIAL NOTICE
99 -- TECHNOLOGY TRANSFER OPPORTUNITY: High Accurate Position Detection and Shape Sensing with Fiber Optics (LAR-TOPS-79)
- Notice Date
- 10/12/2023 11:59:09 AM
- Notice Type
- Special Notice
- NAICS
- 927110
— Space Research and Technology
- Contracting Office
- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION US
- ZIP Code
- 00000
- Solicitation Number
- T2P-LaRC-00128
- Response Due
- 10/12/2024 2:00:00 PM
- Archive Date
- 10/27/2024
- Point of Contact
- NASA�s Technology Transfer Program
- E-Mail Address
-
Agency-Patent-Licensing@mail.nasa.gov
(Agency-Patent-Licensing@mail.nasa.gov)
- Description
- NASA�s Technology Transfer Program solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use.�NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: NASA's Langley Research Center has demonstrated a patent pending method and apparatus for determining the position, in three dimensions, of any point on an optical fiber. The new method uses low reflectance Fiber Bragg Grating (FBG) strain sensors in a multi-core fiber to determine how any point along that fiber is positioned in space. The characteristics of optical fibers and the FBGs vary with curvature, and by sensing the relative change of FBGs in each of three or more fiber cores, the three-dimensional change in position can be determined. By using this method in monitoring applications where optical fibers can be deployed--such as in structures, medical devices, or robotics--precise deflection, end position, and location can be determined in near real time. This innovative position detection method offers 10 times greater positional accuracy than comparable optical techniques. NASA's novel method was developed to more accurately measure the position and shape of optical fibers. Multi-core optical fibers contain multiple light-guiding cores arranged symmetrically. Sensors, such as FBGs, are embedded into each of the cores. Such an arrangement allows for the measurement of strain in each core of the fiber at specific axial locations along the fiber. When a multi-core fiber is subjected to bending, the strain imposed in each core relative to one another is used to provide position information. In the past, shape-sensing measurements using optical fibers estimated bending at sequential points along the fiber, and the resulting measurement had many discontinuities and errors. The combination of these errors resulted in a very poor indication of actual fiber position in three-dimensional space. NASA's patent-pending algorithms and apparatus incorporate not only fiber bending measurements, but fiber twisting measurements as well, to eliminate previous sources of error. The uniqueness of the algorithm is in how the curvature, bend-direction, and twisting information of the fiber are all brought together to obtain a highly accurate 3-D location and shape characterization. The new methods have been demonstrated to significantly improve the accuracy of multi-core fiber optic shape sensors. To express interest in this opportunity, please submit a license application through NASA�s Automated Technology Licensing Application System (ATLAS) by visiting�https://technology.nasa.gov/patent/LAR-TOPS-79 If you have any questions, please e-mail NASA�s Technology Transfer Program at�Agency-Patent-Licensing@mail.nasa.gov�with the title of this Technology Transfer Opportunity as listed in this SAM.gov notice and your preferred contact information. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at�https://technology.nasa.gov/ These responses are provided to members of NASA�s Technology Transfer Program for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities.�No follow-on procurement is expected to result from responses to this Notice.
- Web Link
-
SAM.gov Permalink
(https://sam.gov/opp/123dbd5a5ec547a0b942c3fe9004dfbf/view)
- Record
- SN06857984-F 20231014/231012230047 (samdaily.us)
- Source
-
SAM.gov Link to This Notice
(may not be valid after Archive Date)
| FSG Index | This Issue's Index | Today's SAM Daily Index Page |