SPECIAL NOTICE
99 -- System for Flight Control of Extremely Fast (Hypersonic) Aircraft (LAR-TOPS-363)
- Notice Date
- 12/7/2023 10:54:50 AM
- Notice Type
- Special Notice
- NAICS
- 927110
— Space Research and Technology
- Contracting Office
- NATIONAL AERONAUTICS AND SPACE ADMINISTRATION US
- ZIP Code
- 00000
- Solicitation Number
- T2P-LaRC-00141
- Response Due
- 12/7/2024 2:00:00 PM
- Archive Date
- 12/22/2024
- Point of Contact
- NASA�s Technology Transfer Program
- E-Mail Address
-
Agency-Patent-Licensing@mail.nasa.gov
(Agency-Patent-Licensing@mail.nasa.gov)
- Description
- NASA�s Technology Transfer Program solicits inquiries from companies interested in obtaining license rights to commercialize, manufacture and market the following technology. License rights may be issued on an exclusive or nonexclusive basis and may include specific fields of use.�NASA provides no funding in conjunction with these potential licenses. THE TECHNOLOGY: Researchers at NASAs Langley Research Center have designed an electrode-based system for guidance, navigation and control of aircraft or spacecraft moving at hypersonic speeds in ionizing atmospheres. The system is composed of two electrodes that sit on the surface of a crafts thermal protection system (TPS) and an electromagnet positioned beneath the crafts TPS. The system operates based on the principles of magnetohydrodynamics (MHD) and uses energy harvested from the ionized flow occurring during flight at hypersonic speeds to power the electromagnet and generate extremely large Lorentz forces capable of augmenting lift and drag forces to steer and control the craft. The energy harvested can alternatively be stored for later use. NASAs system is simpler than conventional methods for control of hypersonic craft (e.g., chemical propulsion, shifting flight center of gravity, or trim tabs) and enables new entry, descent, and landing mission architectures. NASAs MHD patch technology consists of two electrodes positioned a prescribed distance apart on the surface of the TPS of an aircraft or spacecraft and an electromagnetic coil placed directly below the electrodes with the magnetic field protruding out of the surface. During hypersonic flight, the conductive ionizing atmospheric flow over the surface enables current to flow between the two electrodes. This current is harnessed to power the electromagnet which in turn generates strong Lorentz forces that augment lift and drag forces for guidance, navigation, and control of the craft. Alternatively, the current can be used to charge a battery. Changing the size of the MHD patch (e.g., the length or distance between the electrodes), the strength of the electromagnet, or the direction of the magnetic field enables tuning of generated forces for a given craft design. Multiple MHD patches can be leveraged on a single craft. In-silico evaluation of the MHD patch technology on select aeroshell designs for mock entry into planetary atmospheres has been performed. A 1m2 MHD patch exerts forces up to 200 kN under simulated Neptune atmosphere entry, significantly increasing the lift/drag (L/D) ratio for the aeroshell investigated. This value is the same order of magnitude as the whole body drag and lift forces computed for the aeroshell suggesting the generated forces can be used to control a craft. To express interest in this opportunity, please submit a license application through NASA�s Automated Technology Licensing Application System (ATLAS) by visiting�https://technology.nasa.gov/patent/LAR-TOPS-363 If you have any questions, please e-mail NASA�s Technology Transfer Program at�Agency-Patent-Licensing@mail.nasa.gov�with the title of this Technology Transfer Opportunity as listed in this SAM.gov notice and your preferred contact information. For more information about licensing other NASA-developed technologies, please visit the NASA Technology Transfer Portal at�https://technology.nasa.gov/ These responses are provided to members of NASA�s Technology Transfer Program for the purpose of promoting public awareness of NASA-developed technology products, and conducting preliminary market research to determine public interest in and potential for future licensing opportunities.�No follow-on procurement is expected to result from responses to this Notice.
- Web Link
-
SAM.gov Permalink
(https://sam.gov/opp/a617ceaf1f7240a38f240879336819b5/view)
- Record
- SN06905355-F 20231209/231207230044 (samdaily.us)
- Source
-
SAM.gov Link to This Notice
(may not be valid after Archive Date)
| FSG Index | This Issue's Index | Today's SAM Daily Index Page |